
Physics H7C Fall 1999 Solutions to Problem Set 8 Derek Kimball

Stop talking and write down the Hamiltonian!

- I. B. Khriplovich, Novosibirsk State University (Russia), during a seminar at
Berkeley.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

(a)

First we determine how many visible photons are emitted from the surface of the
sun-like star. The radiated power per unit area per unit wavelength dR

dλ is given
by the Planck distribution:

dR

dλ
=

2πhc2

λ5(ehc/λkT − 1) . (1)

We want to convert this quantity into the number of photons per second per unit
area per unit wavelength dn

dλ , which can be done by dividing
dR
dλ by the energy per

photon:

Ephoton = �ω =
hc

λ
. (2)

We integrate over the visible spectrum to get photons per second per unit area,
using T = 5800 K for the temperature of the sun-like star:

n =
∫ 700 nm

400 nm

dλ
2πc

λ4(ehc/λkT − 1) = 6.3× 10
25 photons s−1 m−2. (3)

The total number of photons given off by the sun per second N is n times the
surface area of the star, which is roughly 4πR2

S = 6 × 1018 m2. This gives us
3.8×1044 photons per second from the star! We scale this by the solid angle
subtended by the observer’s eye,

πr2
eye

4πR2
SE

,

and solve for RSE such that the eye receives at least 250 photons. This gives us

Rmax
SE ≈ 1019 m ≈ 1300 light years.

(b)

The cosmic background radiation fills the universe roughly isotropically (there is
no solid angle suppression), and the temperature of the radiation is T = 2.74 K.
The incident number of photons per square cm on Penzias and Wilson’s antenna
is given by an equation similar to Eq. (3):

n =
∫ ∞

0

dλ
2πc

λ4(ehc/λkT − 1) = 2.6× 10
12 photons s−1 cm−2. (4)

Problem 2

(a)

The maximum energy of a electron ejected by the photoelectric effect is given by:

hc

λ
− Φ, (5)

where Φ is the work function. We have two data points to use in this relation,
with which we can determine h:

hc

0.2µm
− Φ = 2.3 eV

hc

0.313µm
− Φ = 0.9 eV

Subtracting these equations and solving for h gives us

h ≈ 2.6× 10−21 MeV · s.
Substituting this value of h back into one of the photoelectric effect equations gives
us the work function

Φ = 1.58 eV.

(b)

Quantum efficiency of the photocathode is just the ratio of emitted electrons to
incident photons. The number of photons is the power of light over the average
energy per photon at this wavelength:

Nγ =
Pλ

hc
= 1.6× 1015 photons/sec.
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The number of electrons is just the current over the charge per electron:

Ne =
I

qe
= 6.2× 1012 electrons/sec.

Taking the ratio gives us the quantum efficiency:

QE = 0.0039 = 0.39%.

This was using the correct value for h. If you used the value of h you obtained
from part (a) of this problem, you would find

QE = 0.0025 = 0.25%.

Problem 3

(a)

For thermal radiation, the average energy per photon is given by:

〈E〉 = 1
n

∫ ∞

0

dE · E dn

dE
(6)

The energy per unit volume u is given by:

u = n〈E〉 =
∫ ∞

0

dE · E dn

dE
(7)

We can employ the fact that from Eq. (7), du
dE = E dn

dE , which gives us

du

dE

dE

dλ
= E

dn

dE

dE

dλ
(8)

This reduces to our desired result, simply that:

du

dλ
= E

dn

dλ
=

hc

λ

dn

dλ
. (9)

(b)

The total photon density n is given by:

n =
∫ ∞

0

dλ
dn

dλ
=

∫ ∞

0

dλ
λ

hc

du

dλ
, (10)

which gives us:

n =
∫ ∞

0

dλ

(
λ

hc

)
8πhc

λ5(ehc/λkT − 1) = 8π
∫ ∞

0

dλ

λ4(ehc/λkT − 1) . (11)

Making the appropriate substitution x ≡ hc/λkT and dx = − hc
kT

dλ
λ2 , we get the

desired result:

n = 8π
(
kT

hc

)3 ∫ ∞

0

dx
x2

ex − 1 ≈ (3.17× 1019 eV−3 ·m−3)(kT)3. (12)

(c)

The average energy per photon is u/n. u = 4R/c can be found from the Stefan-
Boltzmann law (the factor of 4 comes from averaging over all angles, Rohlf Eqs.
(3.17) and (3.18)),

u = 4R/c =
4σ′(kT )4

c
. (13)

Therefore, the average energy per photon is found from the ratio of Eqs. (13) and
(12) to be:

〈E〉 = u

n
=

4σ′(kT )
c · (3.17× 1019 eV−3 ·m−3)

. (14)

Plugging in the constants gives us:

〈E〉 ≈ 2.7 kT. (15)

(d)

For the number density of photons, we obtain from Eq. (12):

n = (3.17× 1019 eV−3 ·m−3)[(8.62× 10−5 eV/K)(2.74 K)]3 ≈ 4× 108 m−3.

For the energy density, we from Eq. (15) we find that

〈E〉 ≈ 0.64meV.
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Problem 4

(a)

Acceleration a for a circular orbit is given by:

a =
v2

r
. (16)

Angular momentum L, applying the Bohr quantization condition, is given by:

L = mvr = n�. (17)

Solving for v from Eq. (17) and substituting into Eq. (16), we obtain:

a =
L2

m2r3
=

n2
�

2

m2r3
. (18)

The Bohr radius r is given by:

r = (4πε0)
n2

�
2

me2
. (19)

Using Eq. (19) in conjunction with Eq. (18), we find an expression for a in terms
of fundamental constants:

a =
n2

�
2

m2r3
=

(
1
4πε0

)3
me6

n4�4
. (20)

Using Eq. (20) in the classical expression for radiated power gives us:

P =
1
4πε0

2e2

3c3
a2 =

(
1
4πε0

)7 2
3
m2e14

c3n8�8
. (21)

(b)

The energy En in the nth level of the Bohr atom is given by:

En = −α2mc2

2n2
= −−13.6 eV

n2
, (22)

so the energy radiated in a n → n− 1 transition is:

∆E = −13.6 eV
(
1
n2

− 1
(n− 1)2

)
. (23)

The decay rate γ is then the ratio of the radiated power (we assume that the
electron is in the nth orbit until the moment it decays) to the energy difference
between the levels:

γ =
P

∆E
. (24)

If we plug in our result from part (a) and use n = 2, we get

γ = 108 s−1.

If the decay is from the nth level to the (n − m)th level, we merely adjust the
energy difference in Eq. (23):

∆E = −13.6 eV
(
1
n2

− 1
(n−m)2

)
. (25)

and employ this equation in Eq. (24). Qualitatively, we see that if the energy dif-
ference is greater and the power radiated is the same, the decay rate will decrease.
This is an example of the limitations of the Bohr model, since although it correctly
predicts the order of magnitude of the transition rates it does not correctly predict
the dependence of transition rates on the energy difference between levels, which
actually scales as ω3.

(c)

There is an energy time uncertainty principle, which can be derived from ∆x∆p ≥
�/2 in the following hand-waving fashion:

∆E∆t =
( p

m
∆p

)(
m

p
∆x

)
= ∆x∆p.

We use the lifetime (1/γ) as the uncertainty in time, and then find for the uncer-
tainty in energy:

∆E =
γ�

2
(26)

The value of ∆E is (108 s−1) · (197.3 MeV fm·(3× 1023fm/s)−1), or 6× 10−8 eV.
The energy difference between the first and second levels in hydrogen is 10 eV, so
the linewidth is smaller than the energy difference by nine orders of magnitude!
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Problem 5

In calculations involving the Bohr model, the electron mass is replaced by the
reduced mass of the muon-proton system, which is near the mass of the muon:

m =
mµmp

mµ +mp
= 95 MeV.

Energy levels in the Bohr model are linear with respect to the electron mass, and
are given by

En = −13.6 eV
n2

· 95 MeV
0.5 MeV

(27)

for the muon-proton system.

(a)

A free muon decays with a characteristic lifetime 2.2 × 10−6 s, primarily in the
mode:

µ → e− + ν̄e + νµ.

If the capture probability was large, it would make the lifetime shorter compared
to the lifetime of a muon (at rest), since the two rates would add.

(b)

If the capture probability was small enough to be neglected, then the effect of
time dilation would lengthen the lifetime of the muon (since in the muon-proton
system, the muon has a characteristic velocity αc), compared to a muon at rest.

Problem 6

If O is divided by the characteristic impedance of free space Z0, we get (2α)−1.
So

O = Z0

2α
,

probably.

Problem 7

(a)

The typical electron velocity in the Bohr model is v = αc, for the deuteron we
replace α by αs. So we have v = αsc = 3 × 107 m/s for both the proton and
neutron.

(b)

The reduced mass in the deuteron is roughly mp/2, so the nuclear “Bohr radius”
r is given by:

r =
2�c

mpc2αs
≈ 2 · 197.3 MeV · fm

0.1 · 938 MeV = 4 fm.

(c)

The binding energy of the deuteron is roughly 1
2α

2
smc2 = 2 MeV.

Problem 8

First, we equate the relativistic centripetal force to the electrostatic force acting
on the electron:

ke2

r2
=

γmv2

r
, (28)

and proceed to solve for the radius:

r =
ke2

γmv2
. (29)

We can also use the Bohr quantization condition

pr = n�

in conjunction with the relativistic expression for the momentum

p = γmv

to find the radius:

r =
�

γmv
. (30)

Setting Eqs. (29) and (30) equal, we can solve for the velocity, and we obtain the
desired result v = αc.
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